Interaction of selenium compounds with zinc finger proteins involved in DNA repair.
نویسندگان
چکیده
As an essential element, selenium is present in enzymes from several families, including glutathione peroxidases, and is thought to exert anticarcinogenic properties. A remarkable feature of selenium consists of its ability to oxidize thiols under reducing conditions. Thus, one mode of action recently suggested is the oxidation of thiol groups of metallothionein, thereby providing zinc for essential reactions. However, tetrahedral zinc ion complexation to four thiolates, similar to that found in metallothionein, is present in one of the major classes of transcription factors and other so-called zinc finger proteins. Within this study we investigated the effect of selenium compounds on the activity of the formamidopyrimidine-DNA glycosylase (Fpg), a zinc finger protein involved in base excision repair, and on the DNA-binding capacity and integrity of xeroderma pigmentosum group A protein (XPA), a zinc finger protein essential for nucleotide excision repair. The reducible selenium compounds phenylseleninic acid, phenylselenyl chloride, selenocystine, ebselen, and 2-nitrophenylselenocyanate caused a concentration-dependent decrease of Fpg activity, while no inhibition was detected with fully reduced selenomethionine, methylselenocysteine or some sulfur-containing analogs. Furthermore, reducible selenium compounds interfered with XPA-DNA binding and released zinc from the zinc finger motif, XPAzf. Zinc release was even evident at high glutathione/oxidised glutathine ratios prevailing under cellular conditions. Finally, comparative studies with metallothionein and XPAzf revealed similar or even accelerated zinc release from XPAzf. Altogether, the results indicate that zinc finger motifs are highly reactive towards oxidizing selenium compounds. This could affect gene expression, DNA repair and, thus, genomic stability.
منابع مشابه
Differential effects of toxic metal compounds on the activities of Fpg and XPA, two zinc finger proteins involved in DNA repair.
Even though not mutagenic, compounds of the carcinogenic metals nickel, cadmium, cobalt and arsenic have been shown previously to inhibit nucleotide excision repair and base excision repair at low, non-cytotoxic concentrations. Since some toxic metals have high affinities for -SH groups, we used the bacterial formamidopyrimidine-DNA glycosylase (Fpg protein) and the mammalian XPA protein as mod...
متن کاملInteractions by carcinogenic metal compounds with DNA repair processes: toxicological implications.
Even though compounds of nickel, arsenic, cobalt and cadmium are carcinogenic, their mutagenic potentials are rather weak. In contrast, they exert pronounced comutagenic effects, which may be explained by disturbances of different DNA repair systems. Thus, cobalt, arsenic, nickel and cadmium interfere with base and nucleotide excision repair, even though they affect different steps of the respe...
متن کاملA novel interaction between DNA ligase III and DNA polymerase gamma plays an essential role in mitochondrial DNA stability.
The data in the present study show that DNA polymerase gamma and DNA ligase III interact in mitochondrial protein extracts from cultured HT1080 cells. An interaction was also observed between the two recombinant proteins in vitro. Expression of catalytically inert versions of DNA ligase III that bind DNA polymerase gamma was associated with reduced mitochondrial DNA copy number and integrity. I...
متن کاملIn Vivo Reconstitution of Saccharomyces cerevisiae DNA Polymerase in Insect Cells
DNA polymerase (pol ) is a multiple subunit complex consisting of at least four proteins, including catalytic Pol2p, Dpb2p, Dpb3p, and Dpb4p. Pol has been shown to play essential roles in chromosomal DNA replication. Here, we report reconstitution of the yeast pol complex, which was expressed and purified from baculovirus-infected insect cells. During the purification, we were able to resolve t...
متن کاملInterference by toxic metal ions with DNA repair processes and cell cycle control: molecular mechanisms.
Nickel, cadmium, cobalt, and arsenic compounds are well-known carcinogens to humans and experimental animals. Even though their DNA-damaging potentials are rather weak, they interfere with the nucleotide and base excision repair at low, noncytotoxic concentrations. For example, both water-soluble Ni(II) and particulate black NiO greatly reduced the repair of DNA adducts induced by benzo[a]pyren...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- European journal of biochemistry
دوره 271 15 شماره
صفحات -
تاریخ انتشار 2004